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LETTER
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The recent study of Ashton et al. [D.J. Ashton, N.B. Wilding, and
P. Sollich, J. Chem. Phys. 132, 074111 (2010)], which is appropriate to
insulating fluids like argon, is contrasted with the results for liquid metal
assemblies, such as are discussed by Leys et al. [F.E. Leys, N.H. March,
V.E. Van Doren, and G. Straub, Phys. Chem. Liq. 39, 133 (2001)].
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In earlier work, Leys et al. [1] (see also [2]) have proposed a modification of a semi-

empirical treatment going back to Guggenheim [3], who studied the coexistence

curves of a sequence of insulating fluids including argon, when dealing instead with

the heavy alkali metals Rb and Cs. Here, we relate these studies to the recent article

of Ashton et al. [4], which has motivated the present Letter.
Returning to Guggenheim’s work [3], his figure 3.11 shows the reduced densities

of coexisting liquid and vapour curves for the inert gases Ne, Ar, Kr and Xe, as well

as for the molecular insulating fluids N2, O2, CO and CH4. He notes first that if �L

denotes the density of the liquid and �G that of the vapour in mutual equilibrium at

temperature T, while �c is the density at the critical point, then, following from the

principle of corresponding states, one should anticipate that �L/�c and �
G/�c should

be common functions of T/Tc. How nearly this is the case for the eight insulating

fluids listed above is clear from figure 3.11 in Guggenheim’s book [3].
In fact, figure 3.11 contains curves obtained from his empirical formulae [3]

ð�L þ �GÞ=2�c ¼ 1þ
3

4
ð1� T=TcÞ, ð1Þ

and

ð�L � �GÞ=�c ¼
7

2
ð1� T=TcÞ

1=3, ð2Þ
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which fit the eight insulating fluids above remarkably well. However, Leys et

al. [1] have emphasised that Equations (1) and (2) do not work well for the metallic

fluids Rb and Cs, and have proposed modifications to Equations (1) and (2)

which read

ð�L þ �GÞ=2�c ¼ 1þ constð1� T=TcÞ
2=3 ð3Þ

and

ð�L � �GÞ=�c ¼ const0ð1� T=TcÞ
1=3: ð4Þ

With this background, we turn next to [4], which will be briefly summarised

below. In essence, these authors address the issue of how to determine the

coexistence curve and the critical point parameters within the restricted Gibbs

ensemble (RGE) [5,6]. In particular, in the subcritical region, in [4] an intersection

method for estimating the coexistence densities has been proposed and tested. It

involves measurements of the RGE peak densities as a function of the overall system

density. In the near-critical regime, Ashton et al. [4] have described and extended, a

finite-size scaling method by which accurate estimates of fluid critical point

parameters can be obtained within the RGE.
However, in [4] it is also stressed that for single component fluids considered in

this article, or mixtures of similarly sized particles, RGE simulations are not to be

considered as competitive with standard ensembles such as the grand canonical

ensemble, constant NPT, or the full Gibbs ensemble [7]. Ashton et al. [4] anticipate

that their approach via the RGE will come into its own for highly size-asymmetric

mixtures.
To conclude, we stress that in [4] the RGE is used only for a single-component

fluid, which is described via a Lennard–Jones 6-12 potential. This limits the results to

the Guggenheim plot in figure 3.11 of [3]. As emphasised in [1], while this plot

is quite well fitted by Equations (1) and (2) cited above, appropriate for numerous

insulating fluids, for liquid metal fluids typified by the heavy alkalis Rb and Cs these

equations must be changed to the forms of Equations (3) and (4) cited above. Of

course, these forms are, as stressed above, semi-empirical and it will clearly be of

considerable interest for the future if finite scaling procedures such as applied in [4]

to insulating fluids could be extended to treat metallic fluids. However, to date,

accurate experimental data, to our present knowledge, is available only for fluid Hg,

and the heavy alkalis Rb and Cs. A particular challenge for finite-size scaling is to

explain the departures from the law of rectilinear diameters in the metallic fluids

Rb and Cs.
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